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ABSTRACT

A new class of counterexamples to a generalized cancellation problem for

affine varieties is presented. Each member of the class is an affine factorial

complex threefold admitting a locally trivial action of the additive group,

hence the total space for a principal Ga bundle over a quasiaffine base.

The automorphism groups for these varieties are also determined.

1. Introduction

A well-known cancellation problem asks, for complex affine varieties X and Y,

whether an isomorphism X × C ∼=Y × C implies that X ∼= Y. For X and Y of

dimension 1 a positive answer is given by [1] and for X and Y of dimension 2

counterexamples are provided by the Danielewski surfaces [2] [10] [8] [5]. On the

other hand, for X × C ∼= C3, Fujita and Miyanishi-Sugie proved that X ∼= C2.
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The Danielewski surfaces can be realized as total spaces for principal bundles for

Ga, the additive group of complex numbers, over the affine line with two origins.

They are therefore smooth surfaces, but nonfactorial, i.e., their coordinate rings

lack the unique factorization property. It is natural then to ask whether the

cancellation problem has a positive solution for factorial affine varieties, or for

affine total spaces of principal Ga bundles over quasiaffine varieties. We produce

families of three dimensional counterexamples.

To point out the role played by principal Ga bundles, let Y be a scheme

over C, and X1, X2 total spaces for principal Ga bundles over Y. Then each Xi

is represented by a one cocycle in H1(Y, OY ), and we can represent the base

extension X1×Y X2 by elements of H1(X1, OX1
) and H1(X2, OX2

) respectively.

If the Xi are affine then H1(Xi, OXi
) = 0 and therefore, X1 ×C ∼= X1×Y X2

∼=

X2 × C. In particular, affine total spaces for principal Ga bundles is a natural

context in which to seek potential counterexamples to the cancellation problem.

In the case of the Danielewski surfaces, not only are the bundles inequiva-

lent, the total spaces are not homeomorphic in the natural (complex) topology

on C3, let alone isomorphic as varieties. For a complex quasiprojective base

however, a principal Ga bundle is necessarily trivial in the natural topology

[19]. Thus algebraic methods are necessary to distinguish the total spaces. The

Makar–Limanov invariant, which for an affine k-domain A is the intersection of

the kernels of all locally nilpotent k-derivations of A, provides the necessary al-

gebraic tool enabling the determination of the automorphism groups of certain

affine threefolds, all obtained as total spaces for principal Ga bundles over the

spectrum of singular but factorial complex surfaces punctured at the singular

point. A class of these threefolds yield the desired counterexamples:

Example 1: Let Xn,m ⊂ C5 be the affine variety defined by

Xa + Y b + Zc, XmU − Y nV − 1,

with m, n positive integers and a, b, c pairwise relatively prime positive integers

satisfying 1/a + 1/b + 1/c < 1. Then Xn,m is factorial,

Xn,m × C ∼= Xn′,m′ × C

for all (m, n), (m′, n′), but Xn,m
∼= Xn′,m′ implies that (m, n) = (m′, n′).

We suspect that the condition 1/a + 1/b + 1/c < 1 can be weakened.
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Principal Ga bundles with affine total space X arise from locally trivial al-

gebraic Ga actions on X . The local triviality implies that the quotient X/Ga

exists as an algebraic scheme, and gives X the structure of a principal Ga bun-

dle over X/Ga. If X is in addition factorial, then X/Ga has the structure of

a quasiaffine variety. The Makar–Limanov invariant enters the picture since

every algebraic Ga action on an affine X arises as the exponential of a locally

nilpotent derivation D of C[X ]. If X is factorial, then the action is locally trivial

if and only if ker(D) ∩ im(D) generates the unit ideal in C[X ] [4]. An action

is equivariantly trivial, i.e., X is Ga isomorphic to Y × C with Ga acting by

addition on the second component, if and only if D(s) = 1 for some s ∈ C[X ].

Such an s is called a slice.

One can see easily that no two dimensional UFD can give rise to a counterex-

ample to generalized cancellation via non trivial Ga bundles.

Lemma 1: Let A be a two dimensional finitely generated C algebra which is

a UFD. If A admits a nonzero LND, then A is isomorphic to a one variable

polynomial ring over a UFD subring.

Proof. Suppose that D ∈ Der(A) is locally nilpotent. Denote by F the set of

fixed points of the Ga action on Spec A generated by D. By assumption, either

F is empty, in which case D has a slice [7], or the dimension of F is equal to

one [16]. In the latter case, F the support of a principal divisor D = (f) for

some f ∈ AD, and D(A) ⊂ fA. Thus D′ := f−1D is again locally nilpotent

generating a fixed point free Ga action with a slice.

That the generalized cancellation problem has an affirmative solution for a

polynomial ring in one variable over a one dimensional UFD follows from the

results in [1] or [15, Theorem 2.9].

Since a singular point of a factorial surface is isolated, such a surface cannot

be isomorphic to the product of a curve with a line. Thus

Corollary 1: A singular factorial surface admits no nontrivial locally nilpo-

tent derivations.

2. The Makar–Limanov Invariant

The condition on the exponents a, b, c in the above example will enable us to use

Mason’s theorem, stated here as Theorem 1. Let k be a field of characteristic 0
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and, for f ∈ k[T ], denote by N(f) the number of distinct zeroes of f in an

algebraic closure of k .

Theorem 1 (e.g. [18]): Let f, g ∈ k[T ] and let h = f + g. Assume that f, g, h

are relatively prime of positive degree. Then

max{deg(f), deg(g), deg(h)} < N(fgh).

Two corollaries apply to the problem at hand.

Corollary 2: Let P (X, Y, Z) = Xa + Y b + Zc where a, b, c ∈ N satisfy

1/a + 1/b + 1/c ≤ 1.

If f, g, h ∈ k[T ] satisfy

1. P (f, g, h) = 0 and

2. f, g, h are relatively prime.

Then at least one of f, g, h must be constant.

Proof. It is enough to consider the case that k is algebraically closed. As-

sume that none of f, g, h is constant. Applying Mason’s theorem, the fact that

fa + gb + hc = 0 yields:

max(a · deg(f), b · deg(g), c · deg(h)) < N(fa) + N(gb) + N(hc)

= N(f) + N(g) + N(h)

≤ deg(f) + deg(g) + deg(h).

Suppose that a · deg(f) ≥ b · deg(g), a · deg(f) ≥ c · deg(h) > 0.

Then deg g/ deg f ≤ a/b, deg h/ deg f ≤ a/c so that

a · deg(f) = max(a · deg(f), b · deg(g), c · deg(h))

< deg(f) + deg(g) + deg(h)

≤ deg(f)(1 + a/b + a/c).

Thus 1 < 1/a + 1/b + 1/c, which exactly contradicts the assumption.

The cases where b · deg(g) or c · deg(h) is the largest go equivalently.

Corollary 3: Let P (X, Y, Z) = Xa + Y b + Zc + λ where λ ∈ k, and a, b, c ∈

N\{0, 1, 2, 3} satisfy 1/(a − 3) + 1/(b − 3) + 1/(c − 3) ≤ 1/2. If f, g, h ∈ k[T ]

satisfy

1. P (f, g, h) = 0 and
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2. f, g, h are relatively prime.

Then at least one of f, g, h must be constant.

Proof. Again, it is enough to consider the case that k is algebraically closed.

We will arrive at a contradiction from the assumption that fa + gb +hc = λ for

some nonconstant f, g, h. Taking derivatives with respect to T yields

afa−1f ′ + bgb−1g′ + chc−1h′ = 0.

Now we cannot apply Mason’s theorem directly as there may be common factors

in ff ′, gg′, hh′. Define w := gcd(fa−1f ′, gb−1g′, hc−1h′). Using the fact that

gcd(xy, z) divides gcd(x, z) gcd(y, z) repeatedly we see that w divides

gcd(f ′, gb−1g′, hc−1h′) · gcd(fa−1, g′, hc−1h′)

· gcd(fa−1, gb−1, h′) · gcd(fa−1, gb−1, hc−1)

and since gcd(f, g, h) = 1, we see that deg(w) ≤ deg(f ′) + deg(g′) + deg(h′) =

deg(f) + deg(g) + deg(h) − 3. One can apply Mason’s theorem to

a
1

w
fa−1f ′ + b

1

w
gb−1g′ + c

1

w
hc−1h′ = 0,

which, together with some calculus and Mason’s theorem for the third (strict)

inequality, yields

2(deg(f)+ deg(g) + deg(h))

≥N(ff ′gg′hh′)

≥N
(
ff ′

1

w
gg′

1

w
hh′

1

w

)

>max
(

deg(fa−1f ′
1

w
), deg(gb−1g′

1

w
), deg(hc−1h′

1

w
)
)

=max
(
deg(fa−1f ′), deg(gb−1g′

)
, deg(hc−1h′)

)
− deg(w)

≥max
(
deg(fa−1f ′), deg(gb−1g′), deg(hc−1h′)

)
− deg(f) − deg(g)

− deg(h) + 3

=max
(
a deg(f) − 1, b deg(g) − 1, c deg(h) − 1

)
− deg(f) − deg(g)

− deg(h) + 3

≥max
(
(a − 3) deg(f), (b − 3) deg(g), (c − 3) deg(h)

)
+ 2

>max
(
(a − 3) deg(f), (b − 3) deg(g), (c − 3) deg(h)

)
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Assuming that max((a−3) deg(f), (b−3) deg(g), (c−3) deg(h)) = (a−3) deg(f)

(the other cases go similarly) then will yield

(a − 3) deg(f) < 2(1 + (a − 3)/(b − 3) + (a − 3)/(c − 3)) deg(f)

which exactly contradicts the assumption 1/(a − 3) + 1/(b − 3) + 1/(c − 3) ≤

1/2.

Definition 1: 1. For a k-domain B, LND(B) is the set of locally nilpotent k

derivations of B.

2. Given D ∈ LND(B), s ∈ B is a slice for D if D(s) = 1.

3. Given D ∈ LND(B), an element p of B is called a preslice if 0 = D2(p) 6=

D(p).

Remark 1: A preslice always exists for a nonzero locally nilpotent derivation

D. Indeed, by local nilpotency, for b ∈ B − ker(D), there is a positive integer

n for which 0 6= Dn+1(b) ∈ ker(D). Then p = Dn(b) is a preslice. If D admits

a slice s, then B = BD[s], where BD denotes ker(D), and therefore D = ∂
∂s

[3].

Lemma 2: Let A be a C-domain and x, y, z ∈ A\{0}. Let P = xa + yb + zc + λ

for some a, b, c ∈ N\{0, 1}, λ ∈ C. Let B := A/(P ), and assume that B is a

domain (i.e., P is a prime element of A). If either

(i) λ = 0 and 1/a + 1/b + 1/c ≤ 1, or

(ii) a, b, c ≥ 4 and 1/(a− 3)+ 1/(b− 3)+ 1/(c− 3) ≤ 1/2, then D ∈ LND(B)

implies D(x) = D(y) = D(z) = 0.

Proof. Since B is a domain, and D is locally nilpotent, a preslice p exists. Set

q := D(p) (and thus q ∈ BD) and observe that D extends uniquely to a locally

nilpotent derivation D̃ of B̃ := B[q−1]. Since D̃ has the slice s := p/q we

have B̃ = B̃D[s]. We can identify D̃ with ∂
∂s

. Denote by K the quotient

field of B̃
∂

∂s (= quotient field of BD) noting that D extends uniquely to ∂
∂s

on

K[s]. Write x, y, z ∈ K[s], as x = f(s), y = g(s), z = h(s) for some polynomials

f, g, h ∈ K[s]. If k = gcd(f, g), then k divides h as well. Writing

f = kf̂ , g = kĝ, h = kĥ

we obtain

(kbcf̂)a + (kacĝ)b + (kabĥ)c = 0

and therefore

f̂a + ĝb + ĥc = 0,
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with f̂ , ĝ, ĥ pairwise relatively prime.

In case i) we can use Corollary 2, to conclude that k and at least one of f̂ , ĝ, ĥ

lie in K, so that one of x, y, z lies in ker(D). But if, for instance, D(x) = 0,

then 0 = D(yb + zc) and by the following lemma we see that D(y) = D(z) = 0.

Similarly in case ii) we can use Corollary 3 to conclude that at least one of

x, y, z must lie in ker(D). Suppose it is x. Then again D(yb + zc) = 0 where

b, c ≥ 2.

Lemma 3 (Makar–Limanov [11, Lemma 2]): Let A be a domain and let n, m ∈ N
satisfy n, m ≥ 2. If D ∈ LND(A) and D(c1a

n + c2b
m) = 0 where a, b ∈ A,

c1, c2 ∈ AD, and c1a
n + c2b

m 6= 0 . Then D(a) = D(b) = 0.

Fix P (X, Y, Z) := Xa + Y b + Zc + λ in C[X, Y, Z] and assume that P is

irreducible, i.e., that a, b, c are pairwise relatively prime.

Notation 1: For the remainder of the paper, R := C[X, Y, Z]/(P ), and x, y, z

denote the images of X, Y, Z in R. Set An,m := R[U, V ]/(xmU −ynV −1) where

m, n ∈ N, m, n ≥ 2. The images of U, V in An,m will be denoted by u, v.

Proposition 1: If gcd(a, b) = gcd(a, c) = gcd(b, c) = 1, then An,m is a UFD.

Proof. That R is a UFD in case λ = 0 is a well-known result of Samuel. A

slight modification of the argument in [17] yields the result for λ 6= 0. Define

an R derivation D of An,m by setting D(v) = xm, D(u) = yn). Clearly D is

locally nilpotent and generates a locally trivial Ga action on the smooth variety

Xn,m ≡ Spec An,m. The quotient Xn,m/Ga is isomorphic to the complement of

a finite but nonempty subset of Spec R. The quotient map Xn,m → Xn,m/Ga

is a Zariski fibration with both the base and fiber having trivial Picard group.

By [9] we conclude that Pic(Xn,m) is also trivial and therefore An,mis a UFD.

In case λ = 0 one can argue directly that An,mis a UFD using Nagata’s

theorem [13, Theorem 20.2]. Note that x is a prime element in An,m:

An,m/(x) ∼= C[Y, Z, U, V ]/(Y nV + 1) ∼= C[Y, Z, U ][1/Y ]

a domain, and

An,m [x−1] ∼= C[X, Y, Z]/(Xa + Y b + Zc)[x−1][U ]

is a UFD.

The following is a consequence of Lemma 1.2
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Corollary 4: If D ∈ LND(An,m) then D(x) = D(y) = D(z) = 0.

Lemma 4: Let D ∈ LND(An,m) and assume D 6= 0. Then AD
n,m = C[x, y, z].

Proof. xmD(u) − ynD(v) = D(xmu − ynv) = D(1) = 0. Since An,m is a UFD

we see that D(u) = cyn for some c. Thus D(v) = xmc. Thus D is equivalent to

the locally nilpotent derivation D′ = yn∂u + xm∂v, in particular, they have the

same kernel. An easy application of the algorithm in [6] reveals that ker(D′) =

C[x, y, z].

Theorem 2: ML(An,m) = R.

3. The Automorphism Group

In this section we take R := C[X, Y, Z]/(Xa + Y b + Zc) with a, b, c pairwise

relatively prime satisfying

1/a + 1/b + 1/c < 1,

and An,m as before. The derivation

E := yn∂u + xm∂v ∈ DerC(An,m).

plays a special role.

Lemma 5: Let B be a k-domain, and ϕ ∈ Aut(B). Then ϕ−1LND(B)ϕ =

LND(B). Also, ϕ(ML(B)) = ML(B).

Proof. If D is LND, then ϕ−1Dϕ is also LND. So ϕ−1LND(B)ϕ ⊆ LND(B)

for any automorphism ϕ. Then

ϕ−1(ϕLND(B)ϕ−1)ϕ ⊆ ϕ−1LND(B)ϕ,

which proves the converse inclusion.

It follows moreover that

ϕ(ML(B)) = ϕ

( ⋂

D∈LND(B)

ker(D)

)
=

⋂

D∈LND(B)

ϕ(BD) =
⋂

D∈LND(B)

BϕDϕ−1

which is equal to ML(B) since ϕLND(B)ϕ−1 = LND(B).

Corollary 5: Let ϕ ∈ AutC(An,m). Then ϕ−1Eϕ = λE where λ ∈ C∗.

Proof. LND(An,m) = C[x, y, z]E, so by Lemma 5 ϕ(E) = λE for some λ ∈

C[x, y, z]∗ = C∗.
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Let S ⊂ T ⊂ B be domains, T an S-algebra, and B a T -algebra. Suppose

that for any ϕ ∈ AutS B we have ϕ(T ) = T . Then restriction to T defines

a group homomorphism ρ :AutS B → AutS T and AutS B is an extension of

AutT B by the image of ρ. For S = C, T = R, B = An,m we will show that ρ is

surjective, and determine AutC R and AutR An,m.

The following proposition may be well-known. It can be deduced from several

results in [12] which are summarized in the proof.

Proposition 2: AutC R ∼= C∗ where, for λ ∈ C∗,

λ(x, y, z) = (λbcx, λacy, λabz).

Proof. Let X̃ be the quasihomogeneous factorial affine surface with coordinate

ring R (whose unique singular point is the origin 0) and X ≡ X̃ − {0}. Note

that Aut(X) ∼= Aut(X̃ ). That the mapping

Gm × X → X

(λ , (x, y, z)) 7→ (λbcx, λacy, λabz)

gives an action is clear. The quotient mapping π : X → B, (B ≡ X/G) is

an A1
∗

fibration, i.e., all π fibers are geometrically C∗, and there are precisely

three singular fibers Fa, Fb, Fc,of multiplicity a, b, c respectively. In fact B ∼= P1,

and any automorphism ϕ : X → X preserves the fibration, i.e., yields a group

homomorphism

f : Aut(X) → Aut(P1).

However, relative primeness of a, b, c forces ϕ to stabilize the singular fibers

and moreover Fa = π−1(π(Fa)), Fb = π−1(π(Fb)), Fc = π−1(π(Fc)). Thus

π(Fa), π(Fb), π(Fc) are fixed by f(ϕ), and we see that f is the trivial homo-

morphism [12, Corollary 4.6]. Theorem 6.2 of [12] gives the exact sequence

0 → Gm → Aut(X) → im(f)

as asserted.

Lemma 6: The restriction homomorphism AutC An,m → AutC R is surjective.
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Proof. Let Xn,m be the affine variety with coordinate ring An,m. Observe that

the mapping

Gm × Xn,m → Xn,m

(µ, (x, y, z, u, v)) 7→ (µbcx, µacy, µabz, µ−mbcu, µ−nacv)

is an action inducing the Gm action on X given above.

Lemma 7: ϕ ∈ AutR An,m if and only if ϕ is an R-homomorphism satisfying

ϕ(u, v) = (f(x, y, z)yn + u, f(x, y, z)xm + v) for some f ∈ C[x, y, z]. Conse-

quently, AutR An,m
∼= 〈R, +〉 as groups.

Proof. We know by Corollary 5 that ϕ−1(E)ϕ = λE for some λ ∈ C∗. Define

(F, G) := ϕ(u, v). Also, ϕ(x, y, z) = (x, y, z). So now

(λyn, λxm) = ϕ(λyn, λxm) = ϕλE(u, v) = ϕ(ϕ−1Eϕ)(u, v)

= E(F, G) = (ynFu + xmFv, ynGu + xmGv)

where the subscript denotes partial derivative.

Let us consider the first equation,

λyn = ynFu + xmFv.

Defining H := F − λu, we see that −ynHu = xmHv. By Lemma 8 we see that

H ∈ R, so

F = p(x, y, z) + λu.

The second equation yields λxm = ynGu +xmGv. Defining H := G−λv, yields

−xmHv = ynHu, which by the following lemma yields H = q(x, y, z) and thus

G = q(x, y, z) + λv. Now

0 = ϕ(xmu − ynv − 1) = xmϕ(u) − ynϕ(v) − 1 = xmF − ynG − 1

= xm(p + λu) − yn(q + λv) − 1

= xmp − ynq + λ(xmu − ynv) − 1

= xmp − ynq + λ − 1.

Thus λ = 1 and p = ynf(x, y, z) and q = xmf(x, y, z) for some f . It is not

difficult to check that the constructed objects are well-defined homomorphisms

which are isomorphisms.

Lemma 8: If H ∈ An,m such that −ynHu = xmHv, then H ∈ R.



Vol. 163, 2008 AUTOMORPHISM GROUP 379

Proof. We can find polynomials pi(v) ∈ R[v] = C[x, y, z][v] such that H =∑d
i=0 piu

i for some d ∈ N. Requiring degz(pi) < c for each i ∈ N∗, and

degx(pi) < m for each i ∈ N∗, i 6= 1, then the pi are unique (because of the

equality xmu = ynv + 1 and zc = −xa − yb). The equation −ynHu = xmHv

yields
d−1∑

i=0

−(i + 1)ynpi+1u
i =

d∑

i=0

xmpi,vu
i

where pi,v ≡ ∂pi

∂v
. Substitute ynv+1 for xmu to obtain a unique representation:

d−1∑

i=0

−(i + 1)ynpi+1u
i = xmp0,v +

d−1∑

i=0

(ynv + 1)pi+1,vui,

so

−ynp1 = xmp0,v + (ynv + 1)p1,v

and

−(i + 1)ynpi+1 = (ynv + 1)pi+1,v,

for each i ≥ 1.

Let i ≥ 1 and assume that pi+1 has degree k with respect to v. Let α(x, y, z)

be the top coefficient of pi+1, seen as a polynomial in v. Then −(i + 1)ynα =

ynkα, but that gives a contradiction. So for each i ≥ 1 : pi+1 = 0. This leaves

the equation 0 = xmp0,v which means that p0 ∈ C[x, y, z]. Thus H = p0u
0 ∈

C[x, y, z].

We conclude this section with a statement of the theorem just proved:

Theorem 3: AutC An,m is generated by the maps

1. (x, y, z, u, v) 7→ (x, y, z, f(x, y, z)yn + u, f(x, y, z)xm + v) for f ∈ R,

2. (x, y, z, u, v) 7→ (µbcx, µacy, µabz, µ−mbcu, µ−nacv) for λ ∈ C∗.

Thus AutC An,m
∼= C∗ ⋉ 〈R, +〉.

Note that AutC An,m is nonabelian.

4. Examples

Example 2: Let R = C[X, Y, Z]/(Xa + Y b + Zc) where a, b, c are pairwise

relatively prime positive integers satisfying 1/a + 1/b + 1/c < 1. Then

An,m × C ∼= An′,m′ × C for all (n, m), (n′, m′) but An,m
∼= An′,m′ if and only if
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(n, m) = (n′, m′). Hence the Xn,m ≡ SpecAn,m are the desired counterexam-

ples to the generalized affine cancellation problem.

Proof. Since the SpecAn,m are all total spaces for principal Ga bundles over

SpecR − {(0, 0)}, the first assertion is clear. Write An,m = R[u, v] where

xmu − ynv = 1, and An′,m′ = R[u′, v′] where xm′

u′ − yn′

v′ = 1. Since

1/a + 1/b + 1/c < 1, ML(An,m) = R and an isomorphism Φ : An,m
∼= An′,m′

will restrict to an automorphism of R. Thus, possibly after a composition with

an automorphism of R,

Φ(x) = x, Φ(y) = y, Φ(z) = z.

Let D ∈ LND(An,m) (resp. D′ ∈ LND(An′,m′)) satisfy

D : v 7→ xm 7→ 0, u 7→ yn 7→ 0

D′ : v′ 7→ xm′

7→ 0, u′ 7→ yn′

7→ 0.

Since LND(An,m) = RD and D, D′ are irreducible derivations, the locally

nilpotent derivation Φ−1D′Φ = rD for some r ∈ R∗ = C∗.

Set K = qf(R), identify K ⊗R An,m with K[v], K ⊗R An′,m′ = K[v′], and

note that K[Φ(v)] = K[v′]. Thus

Φ(v) = αv′ + β for some α, β ∈ K.

A calculation reveals that

Φ−1D′Φ(v) = Φ−1(α)xm′

= rxm.

so that αxm′

= rxm.

We obtain

Φ(v) = xm−m′

v′ + β

from which we conclude that D′2(Φ(v)) = 0. A symmetric argument yields that

D′2(Φ(u)) = 0 as well. Thus

Φ(u) = r1u
′ + r2v

′ + r3

Φ(v) = s1u
′ + s2v

′ + s3,

with ri, sj ∈ R, and r1s2 − r2s1 ∈ R∗.

If m > m′, then β ∈ K ∩ An′,m′ = R, so that s1 ∈ xR, s2 = µ′xm−m′

, and

s3 = β. But in this case

r1s2 − r2s1 ∈ xR " R∗.
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Thus m ≤ m′, but the identical argument with the roles of Φ and Φ−1reversed

will show m = m′, and the symmetric argument with the roles of u and v

reversed will show n = n′.
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